

Reg. No.:				Lings
-----------	--	--	--	-------

Question Paper Code: 40991

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Third Semester

Electrical and Electronics Engineering EE 6301 – DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)

(Regulations 2013)

Time: Three Hours

Maximum: 100 lMarks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Ma rks})$

- 1. State the associative property of Boolean algebra.
- 2. Reduce A(A + B).
- 3. Define duality property.
- 4. What is a karnaugh map?
- 5. What is a master-slave flip-flop?
- 6. Give the comparison between synchronous and asynchronous counters.
- 7. Define address and word.
- 8. Why was PAL developed?
- 9. Define Cache memory.
- 10. Infer the concept of switch-level modeling.

PART - B

(5×13=65 Marks)

11. a) i) Prove that ABC + ABC' + AB'C + A'BC = AB + AC + BC.

- (8)
- ii) Convert the given expression in canonical SOP form Y = AC + AB + BC.

DC. (9)

(OR)

b) Designing a 4-bit Adder-Subtractor circuit.

(13)

12.	a)	Write down the steps in implementing a Boolean function with levels of AND				
		gates.	(13)			
		(OR)				
	b)	Give the general procedure for converting a Boolean expression in to multile				
		N.AND diagram.	(13)			
13.	a)	Fixplain the operation of SR flip-flop, T flip-flop and JK flip-flop.	(13)			
		H (OR) BIT YER OLD ALL AND HELD AND ALL				
To.	b)	Explain the flip-flop excitation tables for JK flip-flop and RS flip-flop.	(13)			
14.	a)	Elaborate the concept of PROM, EPROM, EEPROM in detail.	(13)			
eo[100 (OR)				
	b)	Explain the operation of bipolar RAM cell with suitable diagram.	(13)			
15.	81)	Give the different arithmetic operators and bitwise operators.	(13)			
		(OR)				
	. p)	Explain in detail about the principal of operation of RTL design.	(13)			
		PART – C (1×15=15 I	Marks)			
16. a)	Draw the circuit of CMOS AND gate and explain its operation. Also implement					
		using PHDL.	(15)			
		(OR)				
	b)	Design and explain and bit shift register. Also give its truth table with its	4			
		input and output waveform.	(15)			

estina) II - THA

Dies september in canonical SOP form V = 4c - 3d)

-Designing 11,4-bit Adder-Subtractor circuit.